北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2011, Vol. 34 ›› Issue (3): 94-97.doi: 10.13190/jbupt.201103.94.gaolx

• 研究报告 • 上一篇    下一篇

从智能卡数据挖掘客流信息的算法

高联雄1,2,吴建平1   

  1. 1北京邮电大学 计算机学院, 北京 100876; 2云南民族大学 电气信息工程学院, 昆明 650093
  • 收稿日期:2010-06-28 修回日期:2011-02-07 出版日期:2011-06-28 发布日期:2011-03-29
  • 通讯作者: 高联雄 E-mail:gaolianxiong@gmail.com

An Algorithm for Mining Passenger Flow  Information from Smart Card Data

  • Received:2010-06-28 Revised:2011-02-07 Online:2011-06-28 Published:2011-03-29
  • Contact: Lian-Xiong GAO E-mail:gaolianxiong@gmail.com

摘要:

为了从广泛使用的智能卡付费系统获取公交客流信息,提出了一种利用公交调度信息和智能卡刷卡信息推断乘客上车站点的方法. 对同一辆车的连续2次刷卡进行朴素贝叶斯分类,区分是否是在同一个站刷卡;利用极大似然估计、动态规划和二次规划方法估计出各路段的行程时间;运用坐标下降法从不准确的初始参数出发,交替估计行程时间和行程时间的参数,从而推断出每次刷卡的上车站点. 实验结果验证了新方法的正确性和有效性,证明了该方法误差较小,收敛较快. 

关键词: 公共交通网络, 公交智能卡, 朴素贝叶斯分类, 动态规划, 二次规划, 坐标下降法

Abstract:

To collect passenger flow information of public transit from the widely applied smart card fare payment systems, a new method is proposed to infer the stops at which passengers holding smart cards board the bus from smart card fare data and bus schedules. The method first classifies two sequential swipes to decide whether they occur at the same stop with naive Bayes classifier. Travel times are then estimated from the naive Bayes classifier results using maximum likelihood estimation, dynamic programming and quadratic programming methods. To solve the problem with imprecise initial parameters, a coordinate descent method is applied. It updates parameters and estimates values alternatively until convergence. An experiment is designed to test this algorithm with realworld data, and it proves that the error of this method is small and the convergence is fast.

Key words: public transit system, public transit smart card, naive Bayes classifier, dynamic programming, quadratic programming, coordinate descent method